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Generalized lattice-BGK concept for thermal and chemically
reacting �ows at low Mach numbers
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Institute of Combustion and Gasdynamics; University of Duisburg-Essen; D-47048 Duisburg; Germany

SUMMARY

The lattice-BGK method has been extended by introducing additional, free parameters in the original
formulation of the lattice-BGK methods. The relationship between these parameters and the macroscopic
moment equations is analysed by Taylor series and Chapman–Enskog expansion. The parameters are
determined from the macroscopic moment equations by comparisons with the governing equations to be
modelled. Extensions are presented for the Navier–Stokes equations at low Mach numbers in Cartesian or
axisymmetric coordinates with constant or variable density, for scalar convection–di�usion equations and
for equations of Poisson type. The generalized lattice-BGK concept is demonstrated by two applications
of chemical engineering. These are the computation of chemically reacting �ow through an axisymmetric
reactor and of the transport and deposition of particles to �lters under the action of di�erent forces.
Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Thermal and chemically reacting �ows at low Mach numbers are typical �ow problems in
chemical engineering, where compressibility e�ects are small but density changes are large
due to heat transfer or chemical heat release. Such problems are characterized by di�erent
physical e�ects. The characteristic scales di�er often by orders of magnitudes, resulting in
mathematically sti� governing equations. Examples for that are the acoustic and �ow scales
at low Mach numbers or the chemical relaxation times and �ow times in reactive �ows.
Computations of such �ow problems are expensive in most cases, in particular if complex
geometry and boundary conditions exist in addition. An alternative solution concept to usual
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conventional CFD methods o�er the lattice-Boltzmann (LB) methods, which avoid or at least
reduce some of the di�culties in sti� problems.
The concept of LB models is based, in principle, on the lattice gas or cellular automata, de-

scribed e.g. in Reference [1]. LB methods as independent numerical methods for �uid-dynamic
simulations were introduced by McNamara et al. [2]. The Boolean algebra was replaced here
by continuous velocity distributions to avoid the statistical noise of cellular automata. En-
hanced collision formulations and tuning of the viscosity were introduced by Higuera et al.
[3, 4]. An e�cient variant of these LB models is the lattice-BGK (LBGK) method, published
in the early 1990s by Qian et al. [5] and Chen et al. [6]. The success of the LBGK concept
is essentially based on the use of the so-called BGK collision operator, where the molecular
distribution function relaxes to its equilibrium value. Details of the LBGK concept, as used
here, are given in Section 3. The discrete phase space of LBGK methods is given in the form
of Cartesian-like lattices, therefore they behave like Cartesian grid solvers for solving the
Navier–Stokes equations. General advantages of Cartesian grid solvers are the easy grid gen-
eration and the simple algorithmic structures. However, additional algorithmic developments
are required in the case of anisotropic �ow �elds and for complex geometries with curved
boundaries. Corresponding developments for LBGK methods are published by the authors, so
for local grid re�nement, e.g. in Reference [7], for higher order boundary approximations on
curvilinear contours in Reference [8] or for acceleration strategies using grid re�nement [9].
The inherent, small time steps of the LBGK methods, scaled with the isothermal speed of
sound cs, and the local grid re�nement make the LBGK methods to e�cient solution concepts
for mathematically sti� �ow problems. The method is additionally characterized by simple and
granular algorithms, well suited for e�cient parallelization. However, the classical formula-
tion is not su�cient for many practical, physical or geometrical cases as, e.g. for reactive
�ows at low Mach numbers or for axisymmetric �ow con�gurations. Attempts were made to
generalize the grid concept to unstructured grids, e.g. in Reference [10] or Reference [11].
Our experiences with LBGK methods based on �nite volumes, e.g. in Reference [12], were
not so positive, since the methods loose their essential advantage of simple algorithm and
high accuracy.
Aim of the present study is therefore to extend the LBGK concept to more general ap-

plications but to preserve the favourable properties of this gas-kinetic concept on isotropic
Cartesian-like meshes. Extensions are made in this study by introducing additional free pa-
rameters to the LBGK formulation, which are determined by comparisons of the correspond-
ing moment equations with the �ow equations under consideration as shown in Section 4.
Examples for such extensions are the Navier–Stokes equations in Cartesian or axisymmet-
ric coordinates with constant or variable density (low Mach number approximation), scalar
convection–di�usion equations and Poisson equations. The applicability of this LBGK concept
is demonstrated by a computation of chemically reacting �ow in an axisymmetric reactor and
by the simulation of particle transport and deposition. Comparisons are made with correspond-
ing �nite-di�erence solutions.

2. LOW MACH NUMBER APPROXIMATION OF NAVIER–STOKES EQUATIONS

An important class of �uid-dynamic problems are �ows at low Mach numbers but variable
density. The Navier–Stokes equations for compressible �uids and incompressible �uids, as
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well, are not or only conditionally suited for computing this class of �ows. Typical examples
are �ows through chemical reactors or heat exchangers usually at low speeds. Variations of
the density are caused in these cases either internally by heat release of chemical reactions or
externally by wall heating, but not by compression of the gas. This situation is characterized
by a low Mach number Ma=U=a∞ � 1. The acoustic speed of sound a∞ is much larger
then a typical �ow velocity U . Hence, one consequence is that the Navier–Stokes equations
of compressible �uids become a mathematically sti� system and converge only slowly due
to the very di�erent time scales. Another consequence is a spatially constant thermodynamic
pressure ptherm =�RT ≈ptherm(t). The situation is consequently modelled by a scale analysis
of the Navier–Stokes equations for compressible �uids with respect to small Mach numbers,
discussed e.g. in References [13, 14]. The analysis is based on the non-dimensional Navier–
Stokes equations for compressible �uids with non-dimensional velocities referenced by U ,
the pressure by pref =�refRT ref and with a reference length L and viscosity �ref . The non-
dimensional momentum equation, using the tensor notation ��f for @f=@x� and ��� for the
Kronecker symbol, reads

@t̃ (�̃ũ�) + @�(�̃ũ�ũ�) +
1

�Ma2
@�p̃=

1
Re

@��̃
(
@�ũ� + @�ũ� − 2

3
���@�ũ�

)
(1)

The dimensionless pressure is now written in a series of Mach number:

p̃= p̃(0) +Ma p̃(1) +Ma2 p̃(2) (2)

The pressure p̃(0) is the thermodynamic pressure, described by the gas equation p̃(0) = �̃ R T̃ ,
the acoustic pressure p̃(1) is the pressure of weak pressure waves and p̃(2) is the hydrodynamic
pressure responsible for the conservation of mass (as in incompressible �ows). Introduction
of Equation (2) in Equation (1) results in zeroth order for the limit Ma→ 0 to

@�p̃(0) = 0 or p̃(0) = p̃(0)(t)

The next higher order, which leads to a non-trivial momentum equation, introduces the hydro-
dynamic pressure ∼Ma2 p̃(2). The consideration of the acoustic mode ∼Ma p̃(1) is neglected
here. It requires additional scaling in time and space and leads to a hyperbolic system of
equations for aeroacoustic applications [14].
Final result of the expansion equation (2) is the so-called low Mach number approximation

(LMNA) of the Navier–Stokes equations [14], which is the basis for computing thermal and
reacting �ows at low Mach numbers. The complete set of the low Mach number approximation
of the Navier–Stokes equations for thermal �ows of ideal gases reads in Cartesian coordinates
x� or x� with �=�= x; y; z:

• Continuity equation:
@t�+ @�(�u�)=0 (3)

• Momentum equations:

@t�u� + @�(�u�u�) + @�p(2) = @��(@�u� + @�u� − 2
3 ���@�u�) (4)

where p(2) is the hydrodynamic pressure, ensuring mass conservation.
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• Energy equation for enthalpy h= cp T :

� @th+ �u� @�h+
dp(0)

dt
= @� � @�T (5)

with the thermodynamic pressure p(0)(t), which is a function of time only,
• Density �(T ) in thermal �ows

�(x; t)=
p(0)(t)
RT (x; t)

(6)

Chemically reacting �ows require in addition a set of species equations. An example is shown
in Section 5.1.

3. LATTICE-BGK APPROACH

Aim of this section is the development of a LBGK method, which models the low Mach num-
ber approximation of the Navier–Stokes equations with variable density and other important
equations of �uid dynamics in Cartesian and axisymmetric coordinate systems.

3.1. Basics of the lattice-BGK method

Starting point is the LBGK method as originally published in References [5, 6]. The method
is based on Cartesian-like lattices in two and three dimensions as sketched in Figure 1.
Along each link i an amount of molecules, expressed by a discrete distribution function

fi, is moved from node to node with molecular speeds ci of constant Cartesian velocity
components c0 �U . One zero speed is assumed in addition. The following de�nitions for the
molecular speed c0, the square modulus p and the isothermal speed of sound cs are common:

c0 ∼U=Ma�U p=
c2i�
c20

c2s =
1
3
c20

D2Q9

p=1
p=1

p=2

p=3

p=0
p=0

δx

δx

D3Q15

Figure 1. Discrete phase space (lattices) in two (D2Q9) and in three (D3Q15) dimensions.
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The LBGK equation for the distribution function fi(t; r) in direction of the discrete molecular
speed ci reads

fi(t + �t; r+ ci�t)=fi(t; r) + �[Fi(t; r)− fi(t; r)] + �t s(k)i (7)

The additional source terms

s(k)i = s(1)i + �t s(2)i (8)

are determined in a later section. The dimensionless collision frequency � is connected with
the kinematic viscosity � by the relation

�=�=�= �t c2s

(
1
�

− 1
2

)
(9)

The parameter � is a variable in space and time even for constant dynamic viscosity �, if the
density � is variable in space and time. The discrete equilibrium distribution Fi is derived from
the Maxwellian distribution by an expansion with respect to small Mach numbers, assuming√

u2�=c2s � 1. The equilibrium distribution Fi with variable density � and additional correction
term Fi; corr reads

Fi= tp

[
P
c2s
+

� u� ci�
c2s

+
� u� u�

2c2s

(
ci�ci�
c2s

− ���

)]
+ Fi; corr (10)

The term Fi; corr is again a correction term, determined later. The macroscopic pseudo-pressure
term P(t; r) collects diagonal elements of the stress tensor. It acts like the hydrodynamic
pressure p(2) in the original LBGK method. The weighting factors tp are functions of the
square modulus p:

D2Q9:p=0; 1; 2 tp=4=9; 1=9; 1=36

D3Q15:p=0; 1; 3 tp=2=9; 1=9; 1=72
(11)

The macroscopic, invariant moments are de�ned as∑
i
fi=

∑
i
Fi=P=c2s (12)

and ∑
i
fici; �=

∑
i
Fici; �=�u� (13)

The formulation of boundary conditions on the molecular level, i.e. for the distribution
function, enable it to deal with complex surfaces in a relatively easy way. Widely used
formulations are the ‘bouncing back conditions’ on rigid walls or the conditions based on the
equilibrium distribution equation (10) using macroscopic boundary values. These conditions
are formally �rst order accurate if a boundary is not aligned with the grid. An alternative
formulation, used in this paper for curvilinear boundaries, is a combination of both, resulting
in a second order accurate boundary formulation for arbitrary grids, published by the authors
in Reference [12].
Local mesh re�nement, as described in Reference [7], is used to re�ne zones, where smaller

scale lengths, as shear layers or �ame zones, have to be resolved. The grid cells are subdivided
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by a re�nement factor n between 2 and 10 with special transfer relations for the distribution
function between coarse and �ne grids. Since the size of the time step decreases with the
re�nement factor n, the CPU-time increases correspondingly. An essential reduction of CPU-
time can be achieved for steady-state problems when using local mesh re�nement together
with the acceleration concept published in Reference [9].

3.2. Analysis of lattice-BGK approach

The analysis, based on Taylor series and Chapman–Enskog expansions connects the micro-
scopic, discrete LBGK approach with the macroscopic moment equations. Aim is to incorpo-
rate the parameters s(k)i , Fi; corr and P(t; r) into the moment equations. The analysis is presented
in a rather compact form, more details are found, e.g. in References [15, 16].
The LBGK equation (7), expanded in space and in time by Taylor series, yields

D� fi +
�t
2

D�D�fi=
�
�t
(Fi − fi) + s(1)i + �ts(2)i (14)

with the abbreviation for the ‘substantial’ derivative

D� ≡ @t + c�@� (15)

The non-equilibrium function fi is split in a series of perturbation distributions f
(k)
i according

to the classical Chapman–Enskog expansion

fi=Fi + �t f(1)
i + �t2 f(2)

i + · · · (16)

Introduction of this series in Equation (14) under consideration of only the �rst perturbation
f(1)
i results in

D� Fi +
�t
2

D�D�Fi + �t D� f
(1)
i =−�f(1)

i + s(1)i + �ts(2)i (17)

The perturbation distribution f(1)
i is determined from Equation (17) taking the limit �t → 0

f(1)
i =− 1

�
(D� Fi − s(1)i )

The expanded LBGK equation (14), then reads

D� Fi= �t
(
1
�

− 1
2

)
D�D�Fi −�f(1)

i − �t
�

D�s
(1)
i + s(1)i + �ts(2)i (18)

The source term s(1)i is assumed to be independent of the molecular speed c�, so that∑
i c�s

(1)
i =0, while the second term ∼ �ts(2)i depends linearly on the molecular speed such that∑

i s
(2)
i =0. The moments of the perturbation distribution are, according to Equations (12) and

(13), de�ned by
∑
i
f(1)
i =0 and

∑
i
c� f

(1)
i =0 (19)

The macroscopic moment equations are derived from Equation (18) by summation over all
molecular speeds i in Equation (18), exploring the symmetry properties of the discrete phase
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space (lattices) in Figure 1. The macroscopic variables are de�ned by the moments equations
(12) and (13) and by the de�nition equation (9) of the kinematic viscosity �(�).
The equation of the zeroth moment M0 represents the mass conservation in the frame of

the LBGK method and reads

@t(P=c2s ) + @�(�u�)− ∑
i
s(1)i =O(�t) (20)

The equations of the �rst moment M1 are constructed in a corresponding manner by multi-
plication of Equation (18) with ci; � and summation over all speeds. The moment M1 describes
the momentum conservation in the frame of the LBGK method and yields

@t�u� + @�(�u�u�) + @�P − @��[@�(�u�) + @�(�u�) + ���@�(�u�)]

=− @�
∑
i
c�c�Fi; corr − �t

�
∑
i
D�c�s

(1)
i + �t

∑
i
c�s

(2)
i +O(�t2) (21)

4. ADAPTED LATTICE-BGK METHODS

The macroscopic moments equations (20) and (21) of the LBGK approach are not closed
due to the unde�ned quantities si, Fi; corr and P. These quantities are determined by compar-
isons of the macroscopic moments with the governing equations of the actual problem under
consideration. A number of important examples are derived in the following.

4.1. Navier–Stokes equations of incompressible �uids in Cartesian coordinates

The Navier–Stokes equations for a �uid with constant density �=�0 = cost in Cartesian co-
ordinates �=�= x; y; z read

@�u� =0

@tu� + @� u�u� + @�p=�0 = @� �[@�u� + @�u�]
(22)

The LBGK method for solving the Navier–Stokes equations of incompressible �uids in
Cartesian coordinates was the starting point of the consideration in Section 3. Therefore,
it is expected that the source terms s(k)i and the correction distribution Fi; corr are zero and
that the pressure term P corresponds to the hydrodynamic pressure p(2). This assumption is
con�rmed by the comparison of the moments M0 and M1 in Equations (20) and (21) with
the Navier–Stokes equations (22). The comparison yields

s(1)i = s(2)i =0 Fi; corr = 0 P=p=p(2) (23)

4.2. Navier–Stokes equations of incompressible �uids in axisymmetric coordinates

An axisymmetric formulation is much more e�ective than a corresponding three-dimensional
computation in problems, where the assumption of axial symmetry is justi�ed. De�ning the
coordinates �=�= x; r, where x is the axial coordinate and r the radial coordinate, the
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Navier–Stokes equations of an incompressible �uid in axisymmetric coordinates (x; r; t) is
written as

@�u� + ur=r =0

@tu� + @� u�u� + ur u�=r + @�p=�0 = @� �[@� u� + @�u�]

+
�
r
(��x(@rux + @xur) + ��r 2 · @r(ur=r)) (24)

with the velocities ux and ur in axial and radial direction.
The curvature terms ∼ 1=r introduce non-homogenous behaviour between the axial and

radial directions, so the basic LBGK concept is not directly transferable to it. A corresponding,
discrete LBGK concept for cylindrical coordinates is not known to the authors. A �exible way
out to handle axisymmetry is proposed here by introducing the source terms as de�ned in
Equation (7). The source terms are determined by comparing the equations of moments M0

and M1, Equations (20) and (21), with the Navier–Stokes equations (24), given above. The
comparison yields

Fi; corr = 0 and P=p=p(2) (25)

where p(2) is the hydrodynamic pressure. The source terms caused by curvature terms read

s(1)i =−ur=r if ci; �=0 else s(1)i =0

s(2)i =
tp
c2s

[
1
r
(@rux + @xur)ci; x + 2@r(ur=r)ci; r

] (26)

A similar derivation of a LBGK method for axisymmetric, incompressible �ow is found in
the literature in Reference [17].
A test case, for which an analytical solution is available, is the developed, laminar �ow

through an axisymmetric, concentric pipe. Figure 2 shows axial velocity pro�les between inner
and outer cylinder wall, computed with this LBGK method and from the analytical solution.
The analytical (crosses) and the LBGK solution (full line) are nearly identically, as expected.
To demonstrate the di�erence to the plane �ow through a channel, the corresponding solution
is plotted as dashed line. The comparison con�rms the correct formulation of the LBGK
method using the source terms of Equation (26).

4.3. Low Mach number approximation of the Navier–Stokes equations in a Cartesian
frame

The low Mach number approximation of the Navier–Stokes equations with variable density
is de�ned by the continuity and the momentum equations (3) and (4). The free parame-
ters si, Fi; corr and P of the LBGK method are determined from these equations by com-
parison with the equations of moments, Equations (20) and (21). It yields the following
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Figure 2. Axial velocity of developed pipe �ow between radius Ri = 0:2 and radius Ro = 1.
———Axisymmetric lattice-BGK solution. ++++Axisymmetric analytical solution. - - - - Analytical

solution of plane channel between Ri and Ro.

quantities:
s(1)i =−@t� if ci; �=0 else s(1)i =0

s(2)i =0

Fi; corr = tp�u�@��
(
ci�ci�
c2s

− ���

)

P=p(2) + 2
3 �@�u� + �@�(�u�)

(27)

The time derivative of the density @t� in the source term s(1)i is approximated by a di�erence
using the known values of � from the actual and from the previous time level. The distribution
Fi; corr corrects the in�uence of the variable density � in the stress tensor, which arises in the
moment equation (21). The pressure-like term P contains here the hydrodynamic pressure p(2)

and additionally a stress contribution for the correct bulk viscosity term. This diagonal term
has to be evaluated at the boundaries only, see Reference [16]. The resulting LBGK method
agrees with the LBGK method, proposed for chemically reacting �ows in Reference [16].

4.4. Low Mach number approximation in axisymmetric coordinates

An axisymmetric LBGK method for the low Mach number approximation of the Navier–
Stokes equations is of interest for �ow computations in devices of circular cross-sections
with axisymmetric and usually stationary, thermal or reacting �ows. A typical example is the
chemical reactor, computed in Section 5.1.
The extension of the continuity and momentum equations (3) and (4) to axisymmetric

coordinates with additional curvature terms on the right-hand side reads:

@t�+ @�(�u�)=−1
r
� ur (28)

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:351–369



360 D. H �ANEL ET AL.

@t�u� + @�(�u�u�) + @�p(2) − @��
(
@�u� + @�u� − 2

3
���@�u�

)

=
1
r

(
−�ur u� + �

(
��x(@rux + @xur) + ��r 2 · @r

(ur

r

)))
(29)

The comparison of the governing equations (28) and (29) with the equations of moments,
Equations (20) and (21), yields the following quantities:

s(1)i =−@t � − �ur=r if ci; �=0 else s(1)i =0

s(2)i =
tp
c2s

[
1
r
(@rux + @xur) ci; x + 2@r(ur=r) ci; r

]

Fi; corr = tp �u�@��
(
ci�ci�
c2s

− ���

)

P=p(2) + 2
3 � @�u� + �@�(�u�)

(30)

The source terms s(1)i and s(2)i contain again the curvature terms ∼ 1=r, the meaning of the
quantities P and Fi; corr remains unchanged with respect to Equation (27). This LBGK approach
is validated against a �nite-di�erence solution in Section 5.1.

4.5. Scalar convection–di�usion equation with variable density

Examples for scalar convection–di�usion equations with variable density �=�(x; t) are the
energy equation (39) or the species equations (40) in Section 5.1. A convection–di�usion
equation for a variable  with a given source term q̇( ) in Cartesian coordinates �=�= x; y; z
reads:

@t(� ) + @��u� = @��@� + q̇( ) (31)

The dependent variable � ·  is de�ned here by the invariant moment

� ·  =∑
i
fi=

∑
i
Fi

The non-linear part ∼ u�u� in the equilibrium distribution function equation (10) is neglected
here, so the complete equilibrium distribution inclusive Fi; corr reads

Fi= tp �
[
1 +

u�ci�
c2s

]
+

tp
c2s

�c�
@��
�

(
ci�ci�
c2s

− ���

)

Again, the comparison with the equations of moments, Equations (20) and (21), yields the
following relations for the source terms of the LBGK approach:

s(1)i = tpq̇( )

�=�= �tc2s

(
1
�

− 1
2

) (32)

The convection–di�usion equation can also be formulated in a axisymmetric coordinate system
in a similar way as done for Equation (24).
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One has to remark here that the use of LBGK approaches for solving scalar convection–
di�usion equations is of advantage if complex boundaries are present, these approaches
increase, however, the storage requirements compared to a �nite-di�erence solution of the
macroscopic equations. Therefore, as a compromise, the �ow equations are usually solved
with advantage by the LBGK method while additional scalar equations are solved by �nite-
di�erence solutions. Examples are the computations in Section 5.1 or in Reference [16].

4.6. Poisson and Laplace equations

The present LBGK concept enables in a similar way the representation of scalar equations of
the type of Poisson or Laplace equations for a potential function 	�

@2	�

@x2�
=−RS� (33)

where RS� is a prescribed right-hand side. LBGK solutions of this type of equations are
presently used to compute electric or magnetic force potentials over complex geometries,
[18]. The potential 	�, interpreted as a component of a vector potential with �=1; 2; 3, is
de�ned as the �rst invariant moment

	�=M1�=
∑
i
fici�=

∑
i
Fici�; �=1; 2; 3 (34)

A linear equilibrium distribution is de�ned by

Fi(t;x)= tp

[
1 +

	�ci�
c2s

]

The source terms in Equation (7) are determined as

s(1)i =0 and �ts(2)i = tp

(
1− �

2

)
ci�

(
2@�M0 +

�t
�
RS�

)

The term @�M0 corrects non-equilibrium e�ects, since the zeroth order moment M0 of the
non-equilibrium distribution is di�erent from the equilibrium value and is de�ned as

M0 =
∑
p; i

fpi �=
∑
p; i

Fi (35)

Neglecting the temporal derivatives in Equation (18) and taking into account Equation (35),
one can derive a kind of continuity equation in the form

@�	�=
�
�t
(1− M0) (36)

The corresponding equation of the �rst moment M1 is derived in a similar way as Equation
(21) by a multiplication with ci� and summation over all distributions. The equation for the �rst
moment yields the desired Poisson equation (33) for the potential equation (34) after including
Equation (36). The LBGK solution results in three potentials 	� for �=1; 2; 3 in 3-D, each
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Figure 3. Comparison between a lattice-BGK and a �nite-di�erence solution for an electrical potential
using Dirichlet (left) or gradient boundary conditions (right) on the cylinder.

satis�es a Poisson equation of type Equation (33). It looks therefore like a result for vector
potentials, but the potentials are not independent here through the coupling over boundary
conditions. Thus only one component is usually used. Figure 3 shows a comparison between
solutions of the LBGK method and of a �nite-di�erence method for an electrical potential
using Dirichlet (left) or gradient boundary conditions (right) on the cylinder boundary. The
results are more or less identically but the computational time of the LBGK approach is nearly
a factor two larger than a �nite-di�erence solution for the Laplace equation on Cartesian
meshes. The essential advantage of the LBGK solution for these type of equations, however,
is seen in the capability of dealing with complex geometries in a relatively simple way, as
used in Section 5.2 for �lter surfaces with deposited particles.

5. TEST CASES

5.1. Axisymmetric chemical reactor
An axisymmetric chemical reactor con�guration, based on an experimental arrangement for
the generation of nano-particles in Reference [19], was designed to validate and to compare
solutions of the new LBGK approach with results of a pressure relaxation method using �nite
di�erences. The same geometrical, physical and chemical data and the same meshes, as well,
are used for both solution concepts. The model reactor is sketched in Figure 4.
The governing equations, describing the chemical reacting �ow, are presented in the fol-

lowing for Cartesian coordinates (
=0) and for an axisymmetric system (
=1):

• Continuity equation:

@t�mix + @�(�mixu�)=−

r
�mix ur (37)

where �mix the mixture density.
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N2+Fe(CO)5
Fe
CO

N2
Fe(CO)5

heat

TW = 1073 K

RW = 0.011m

L = 0.350m

N2

 Ri = 0.035m     

Li = 0.05m    

Figure 4. Model arrangement of the axisymmetric, chemical test reactor.

• Momentum equations:

@t�mixu� + @�(�mixu�u�) + @�p(2) − @��
(
@�u� + @�u� − 2

3
���@�u�

)

=


r

(
−�mixuru� + �

(
��x(@rux + @xur) + ��r 2 · @r

(ur

r

)))
(38)

The pressure is split in the thermodynamic pressure p(0)(t), which is assumed here as a
constant, and in the hydrodynamic pressure p(2), ensuring mass conservation.

• Energy equation:

�mix cp (@tT + u�@�T )− @��@�T − �mix
∑
k
hkwk − dpth(t)

dt
=



r
��rT (39)

where wk and hk are the production rate and the heat of formation of the reacting species.
• Species equations for k=1; 2; : : : ; kmax species:

�mix (@t�k + u�@��k)− @�(�D)kl@��k + �mixwk =


r
�Dkl�r�k (40)

where �k =�k=�mix is the mass fraction of the kth species and Dkl a binary di�usion
coe�cient. The number of species is kmax =4 for the reaction described below.

• Mixture density �mix(T; �i)

�mix =
∑
k
�k =

p(0)(t)
Rmix(x; t)T (x; t)

with R=
∑
k

�k

Wk
(41)

The chemical reaction under investigation is used for the generation of iron particles in gas
phase reactions. The global reaction used in the test cases reads:

Fe(CO)5 →Fe + 5CO

with the forward reaction speed of k=1:93× 109(1=s) exp[−(72× 106=RT)]. Detailed reaction
data are taken from Reference [20]. The reactor, as sketched in Figure 4, consists of a
cylindrical vessel of length L with a heated outer wall of radius RW and an inner pipe of
radius Ri and length Li. The reacting precursor gas Fe(CO)5 is feed in through the inner pipe
together with an inert gas N2. The precursor decomposes under external heat to Fe-atoms,
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Figure 5. Lattice-BGK solutions for axisymmetric, reactive �ow in the reactor as sketched in Figure 4.
The grid resolution is 1201× 43 grid points. From top to bottom: colours of constant axial velocity,

temperature and reaction rate of Fe(CO)5.

which grow along their paths by nucleation and coagulation to nano-particles, which is the
matter of a separate investigation.
The underlying grid is a uniform Cartesian-like grid of constant radial and axial step-sizes.

The number of grid points in axial and radial direction are 1201× 46 for the following results.
The outer walls and the axis coincide with grid lines, thus boundary conditions have to be
prescribed directly on the nodes. The boundary conditions are formulated identically for both
the �nite-di�erence and LBGK solutions, as well. No-slip conditions for the velocities and
zero normal pressure gradients are applied at the walls. The temperature at the outer wall
is assumed to be 1073 and 300 K at inner walls. The terms proportional 1=r on the axis
are expanded in the limit r → 0 assuming axial symmetry and are approximated by �nite
di�erences. The boundary conditions are implemented for the LBGK method in form of
equilibrium functions using the same macroscopic boundary values as for the �nite-di�erence
solutions.
Figure 5 shows three typical results for colours of constant values of axial velocity, of

temperature and of the reaction rate in the plane of axial and radial coordinates. The �gures
do not di�er remarkably for LBGK and �nite-di�erence solutions, thus the results from LBGK
computation are plotted here.
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Figure 6. Comparisons between lattice-BGK solutions (crosses) and �nite-di�erence solutions (full lines)
for the same grid resolution of 1201× 43 grid points in a cut x=0:175 m of the axisymmetric reactor
as sketched in Figure 4. Plotted are the axial velocity (top), the temperature (middle) and the reaction

rate of Fe(CO)5 (bottom) versus radius.

Quantitative comparisons are made in Figure 6 between solutions of the axisymmetric
variant of the LBGK method and a corresponding �nite-di�erence method with pressure re-
laxation. LBGK results mean here that the LBGK method is applied to the �ow equations,
i.e. to the continuity equation (37) and the momentum equations (38), while the energy and
species equations are solved by explicit �nite-di�erence schemes. Finite-di�erence solutions
mean that all equations are solved by �nite-di�erence schemes. Figure 6 shows radial pro�les
of the axial velocity, of the temperature and of the reaction rate of Fe(CO)5 in a cut at an
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Figure 7. Comparison between lattice-BGK solutions for di�erent grid resolutions with
1201× 43, 801× 31 and 601× 23 grid points. Plotted are the temperature (top) and the reaction

rate of Fe(CO)5 (bottom) versus radius.

axial position of x=0:175 m. The �nite-di�erence solution is plotted as full line, the LBGK
solution is marked by crosses. The di�erences are minor as expected.
A simple test of grid dependence is shown in Figure 7 for radial pro�les of temperature

(top) and of the reaction rate of Fe(CO)5 (bottom) versus radius, similar as in Figure 6.
However, comparison is made here between LBGK solutions using di�erent grid resolutions
with 1201× 43, 801× 31 and 601× 23 grid points. The convergence behaviour is satisfactory,
i.e. the coarsest grid with only 23 nodes in radial direction results in a remarkable di�erence
compared to the results on �ner grids, which seem to converge in one pro�le. A more de-
tailed investigation of grid dependence of LBGK methods was performed by the authors in
Reference [9]. It could be shown there that the LBGK method even with grid re�nement is
essentially second order accurate in space O(�xp) with an exponent p between p=1:83 and
2.44 determined by the formula of Richardson.

5.2. Particle transport and deposition

Another interesting application of LBGK methods is the numerical investigation of transport
and deposition of particles on �lter surfaces [18, 21]. The LBGK method is coupled in this
study with a Lagrangian particle (Monte-Carlo) methods. The particle Monte-Carlo method for
computing the translatory motion discrete particles with drag force Fdrag, external force Fext and
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Figure 8. Planes of constant electrical potential around periodical, crossing �lter �bres of diameter
df = 65 �m with in�ow velocity Uin = 0:1 m=s and electric �eld strength of E=300 kV=m (top),
layers of deposited nano-particles of dp = 10 nm (mid) and planes of constant electrical potential,

disturbed by deposited particles (bottom).

random forces Frandom due to Brownian di�usion reads in a short form

mp
dvp
dt
=Fdrag + Fext + Frandom and

drp
dt
= vp (42)
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A set of three additional equations for the angular momentum with corresponding external
and random torques has to be considered in addition, if magnetic particles and interactions
are taken into account.
The solution of the problem requires the knowledge of the �ow �eld for the drag and

of the potential �elds for determining external, electrical or magnetic forces Fext or torques
Text. The geometrical boundaries are relatively complex in both cases due to the complex,
three-dimensional �lter geometries but also due to the irregular surfaces caused by particles
deposited on the surfaces. An advantage of LBGK methods is that such complex boundaries
conditions for the �uid �ows or the electric �eld are easily treated by LBGK methods, as
derived in References [7, 8]. The three-dimensional �ow �eld of an incompressible �uid is
computed here by the corresponding LBGK method, described in Section 4.1. The electric or
scalar, magnetic potentials are determined by a Laplace equation, solved by a LBGK methods
as described in Section 4.6. The solution of the Laplace equation, using the LBGK method,
has found to be not much faster than a solution with usual iterative, �nite-di�erence methods,
but has shown to be more �exible for complex boundary conditions.
A demonstrative example for particle transport and deposition on �lters under electrical

forces with LBGK solutions for the �ow �eld and the electrical �eld is shown in Figure 8. The
left �gure in Figure 8 shows planes of constant, undisturbed (by particles) electrical potential
around the �lter. The charge of the particles has the opposite sign of the charge of the �lter
�bre, so they are attracted by the �lter. If a particle touches the �lter surface or a particle
already deposited, it deposits and exchanges its charge. The middle �gure in Figure 8 gives
an impression of the layers of deposited particles on the �lter. Since the deposited particles
change their charge, the surface having the constant potential of the undisturbed �lter, grows
and becomes irregular. The new boundary conditions are taken into account in the computation
of the electrical �eld, which again in�uences the transport and deposition of the succeeding
particles. The iterative re-computation is repeated after several hundred of time steps. The
right �gure in Figure 8 represents the equi-potential planes again after a certain computation
time, but with the consideration of changed boundary conditions due to deposited particles.

6. CONCLUSIONS

Aim of the present study is an extension of the lattice-BGK concept to more general ap-
plications but to preserve the favourable properties of this gas-kinetic concept on isotropic
Cartesian-like meshes. Extensions are made in this study by introducing additional free param-
eters to the LBGK formulation, which are determined then by comparisons of the resulting
moment equations with the �ow equations under consideration. Examples of LBGK extensions
are given for the Navier–Stokes equations at low Mach numbers in Cartesian or axisymmetric
coordinates with constant or variable density, for scalar convection–di�usion equations and for
Poisson equations. The applicability of this LBGK concept is demonstrated by the computa-
tion of chemically reacting �ow in an axisymmetric reactor and by the simulation of particle
transport and deposition. Comparisons with �nite-di�erence solutions and a check of the grid
dependence have con�rmed the applicability of this concept. The win in CPU-time compared
to the �nite-di�erence solutions was (only) a factor of about two to �ve in the present numer-
ical experiments, but without any optimization and parallelization. Doing the latter, a much
better performance is expected for LBGK methods because their granular algorithm enables
nearly optimal parallelization.
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The gas-kinetic, LBGK model promises therefore a number of advantages against conven-
tional �nite-di�erence or �nite-volume methods for the macroscopic equations.

• The present modi�cations extends the applicability of the LBGK methods.
• The method acts like a Cartesian grid solver, which makes grid generation much easier.
Drawbacks in anisotropic �ow �elds are removed or reduced by local grid re�nement.

• The algorithm is simple and granular, well suited for e�cient parallelization.
• The molecular boundary formulation is well suited for complex geometries.
• The conceptual, small time steps of the LBGK methods, scaled with the speed of sound,
make the LBGK methods e�cient for mathematically sti� �ow problems.

• The LBGK concept avoids costly pressure relaxation for zero or low Mach numbers.
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